54VCXH162245

RAD HARD LOW VOLT. CMOS 16-BIT BUS TRANSCEIVER (3-STATE) WITH 3.6V TOLERANT INPUTS AND OUTPUTS

- 3.6V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED A OUTPUTS:
$\mathrm{t}_{\mathrm{PD}}=3.4 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
$\mathrm{t}_{\mathrm{PD}}=4.3 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V
- SYMMETRICAL IMPEDANCE A OUTPUTS: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- HIGH SPEED B OUTPUTS:
$\mathrm{t}_{\mathrm{PD}}=2.5 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V $\mathrm{t}_{\mathrm{PD}}=3.2 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V
- SYMMETRICAL IMPEDANCE B OUTPUTS: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- 26Ω SERIE RESISTORS IN A PORT OUTPUT
- OPERATING VOLTAGE RANGE: $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2.3 \mathrm{~V}$ to 3.6 V
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES H162245
- BUS HOLD PROVIDED ON BOTH SIDES
- LATCH-UP PERFORMANCE EXCEEDS 300mA (JESD 17)
- ESD PERFORMANCE:

HBM $>2000 \mathrm{~V}$ (MIL STD 883 method 3015); MM > 200V

- 100 Krad mil. 1019.6 (RHA QUAL) CONDITION A
- NO SEL, NO SEU UNDER $72 \mathrm{Mev} / \mathrm{cm}^{2} / \mathrm{mg}$ LET HEAVY IONS IRRADIATION
- DEVICE FULLY COMPLIANT WITH DSCC SMD 5962-02508

DESCRIPTION

The 54VCXH162245 is a low voltage CMOS 16 BIT BUS TRANSCEIVER (3-STATE) fabricated with sub-micron silicon gate and five-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and very high speed 2.3 to 3.6 V applications; it can be interfaced to 3.6 V signal environment for both inputs and outputs.
This IC is intended for two-way asynchronous communication between data buses; the direction of data transmission is determined by DIR input. The two enable inputs $n \bar{G}$ can be used to disable the device so that the buses are effectively

isolated. The device circuits is including 26Ω series resistance in the A port outputs. These resistors permit to reduce line noise in high speed applications. Bus hold on data inputs is provided in order to eliminate the need for external pull-up or pull-down resistor.

PIN CONNECTION

Rev. 2

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess
voltage. All floating bus terminals during High Z State must be held HIGH or LOW.

Table 1: Ordering Codes

PACKAGE	SOLDER DIPPING	FLYING MODEL		ENGINEERING MODEL
		QML-V	QML-Q	
FPC-48	GOLD	RHRXH162245K01V	RHRXH162245K01Q	RHRXH162245K1
		RHRXH162245K2 (*)		
FPC-48	SOLDER	RHRXH162245K02V	RHRXH162245K02Q	

(*) EM with 48 hours Burn-In
Figure 1: Input And Output Equivalent Circuit

Table 2: Pin Description

PIN N${ }^{\circ}$	SYMBOL	NAME AND FUNCTION
1	1DIR	Directional Control
$2,3,5,6,8,9$, 11,12	1B1 to 1B8	Data Inputs/Outputs
$13,14,16,17$, $19,20,22,23$	2 B 1 to 2 B 8	Data Inputs/Outputs
24	2 DIR	Directional Control
25	$2 \overline{\mathrm{G}}$	Output Enable Input
$36,35,33,32$, $30,29,27,26$	2 A 1 to 2 A 8	Data Inputs/Outputs
$47,46,44,43$, $41,40,38,38$	1 A 1 to $1 \mathrm{A8}$	Data Inputs/Outputs
48	$1 \overline{\mathrm{G}}$	Output Enable Input
$4,10,15,21$, $28,34,39,45$	GND	Ground (0V)
$7,18,31,42$	VCC	Positive Supply Voltage

Table 3: Truth Table

INPUTS		FUNCTION		OUTPUT
$\overline{\mathbf{G}}$	DIR	A BUS	B BUS	Yn
L	L	OUTPUT	INPUT	$\mathrm{A}=\mathrm{B}$
L	H	INPUT	OUTPUT	$\mathrm{B}=\mathrm{A}$
H	X	Z	Z	Z

X : Don't Care
Z : High Impedance

Figure 2: IEC Logic Symbols

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (OFF State)	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{I}	DC Input Diode Current	-50	mA
I_{OK}	DC Output Diode Current (note 2)	-50	mA
I_{O}	DC Output Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current per Supply Pin	± 100	mA
P_{D}	Power Dissipation	400	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	260	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) I_{O} absolute maximum rating must be observed
2) $V_{O}<G N D, V_{O}>V_{C C}$

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	2.3 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.3 to 3.6	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (OFF State)	0 to 3.6	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State $)$	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current -A side $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 12	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current -A side $\left(\mathrm{V}_{\mathrm{CC}}=2.3\right.$ to 2.7 V$)$	± 8	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current -B side $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current -B side $\left(\mathrm{V}_{\mathrm{CC}}=2.3\right.$ to 2.7 V$)$	± 18	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time (note 1$)$	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) V_{IN} from 0.8 V to 2 V at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Table 6: DC Specifications (2.7V $<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$ unless otherwise specified)

Symbol	Parameter	Test Condition		Value		Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		-55 to $125{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6		2.0		V
V_{IL}	Low Level Input Voltage				0.8	
V_{OH}	High Level Output Voltage (A Outputs)	2.7 to 3.6	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7	$\mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA}$	2.2		
		3.0	$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$	2.4		
			$\mathrm{I}_{0}=-12 \mathrm{~mA}$	2.2		
V_{OH}	High Level Output Voltage (B Outputs)	2.7 to 3.6	$\mathrm{l}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7	$\mathrm{l}_{0}=-12 \mathrm{~mA}$	2.2		
		3.0	$\mathrm{l}_{0}=-18 \mathrm{~mA}$	2.4		
			$\mathrm{I}_{0}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage (A Outputs)	2.7 to 3.6	$\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2	V
		2.7	$\mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA}$		0.4	
		3.0	$\mathrm{l}_{\mathrm{O}}=8 \mathrm{~mA}$		0.55	
			$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.8	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage (B Outputs)	2.7 to 3.6	$\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2	V
		2.7	$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
		3.0	$\mathrm{l}_{\mathrm{O}}=18 \mathrm{~mA}$		0.4	
			$\mathrm{l}_{\mathrm{O}}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{1}=0$ to 3.6 V		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(HOLD) }}$	Input Hold Current	3.0	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	75		$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2 \mathrm{~V}$	-75		
		3.6	$\mathrm{V}_{1}=0$ to 3.6 V		± 500	
$\mathrm{l}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V		10	$\mu \mathrm{A}$
loz	High Impedance Output Leakage Current	2.7 to 3.6	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{H}} \text { or } \mathrm{V}_{1 \mathrm{~L}} \\ & \mathrm{~V}_{\mathrm{O}}=0 \text { to } 3.6 \mathrm{~V} \end{aligned}$		± 10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	2.7 to 3.6	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		20	$\mu \mathrm{A}$
			V_{1} or $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ to 3.6 V		± 20	
$\Delta_{\text {l }}$	Icc incr. per Input	2.7 to 3.6	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}-0.6 \mathrm{~V}$		750	$\mu \mathrm{A}$

Table 7: DC Specifications (2.3V $<\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$ unless otherwise specified)

Symbol	Parameter	Test Condition		Value		Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		-55 to $125{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
V_{IH}	High Level Input Voltage	2.3 to 2.7		1.6		V
V_{IL}	Low Level Input Voltage				0.7	
V_{OH}	High Level Output Voltage (A Outputs)	2.3 to 2.7	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.3	$\mathrm{I}_{0}=-4 \mathrm{~mA}$	2.0		
			$\mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA}$	1.8		
			$\mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$	1.7		
V_{OH}	High Level Output Voltage (B Outputs)	2.3 to 2.7	$\mathrm{l}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.3	$\mathrm{I}_{0}=-6 \mathrm{~mA}$	2.0		
			$\mathrm{l}_{0}=-12 \mathrm{~mA}$	1.8		
			$\mathrm{l}_{0}=-18 \mathrm{~mA}$	1.7		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage (A Outputs)	2.3 to 2.7	$\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2	V
		2.3	$\mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA}$		0.4	
			$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$		0.6	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage (B Outputs)	2.3 to 2.7	$\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2	V
		2.3	$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
			$\mathrm{I}_{\mathrm{O}}=18 \mathrm{~mA}$		0.6	
1	Input Leakage Current	2.3 to 2.7	$\mathrm{V}_{1}=0$ to 3.6 V		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(HOLD) }}$	Input Hold Current	2.3	$\mathrm{V}_{1}=0.7 \mathrm{~V}$	45		$\mu \mathrm{A}$
			$\mathrm{V}_{1}=1.7 \mathrm{~V}$	-45		
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V		10	$\mu \mathrm{A}$
l_{Oz}	High Impedance Output Leakage Current	2.3 to 2.7	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{O}}=0 \text { to } 3.6 \mathrm{~V} \end{aligned}$		± 10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	2.3 to 2.7	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		20	$\mu \mathrm{A}$
			V_{1} or $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ to 3.6 V		± 20	

Table 8: Dynamic Switching Characteristics ($T_{a}=25^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Test Condition		$\frac{\text { Value }}{T_{A}=25^{\circ} \mathrm{C}}$			Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$					
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Peak Low Voltage Quiet Output (note 1, 3) (A to B)	2.5	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$		0.6		V
		3.3			0.8		
$\mathrm{V}_{\text {OLP }}$	Dynamic Peak Low Voltage Quiet Output (note 1, 3) (B to A)	2.5	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$		0.25		V
		3.3			0.35		
$\mathrm{V}_{\text {OLV }}$	Dynamic Valley Low Voltage Quiet Output (note 1, 3) (A to B)	2.5	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$		-0.6		V
		3.3			-0.8		
$\mathrm{V}_{\text {OLV }}$	Dynamic Valley Low Voltage Quiet Output (note 1, 3) (B to A)	2.5	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$		-0.25		V
		3.3			-0.35		
$\mathrm{V}_{\mathrm{OHV}}$	Dynamic Valley High Voltage Quiet Output (note 2, 3) (A to B)	2.5	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$		1.9		V
		3.3			2.2		
$\mathrm{V}_{\text {OHV }}$	Dynamic Valley High Voltage Quiet Output (note 2, 3) (B to A)	2.5	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$		2.05		V
		3.3			2.65		

1) Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.
2) Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the HIGH state.
3) Parameters guaranteed by design.

Table 9: AC Electrical Characteristics $\left(C_{L}=30 p F, R_{L}=500 \Omega\right.$, Input $\left.t_{r}=t_{f}=2.0 n s\right)$

Symbol	Parameter	Test Condition				Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time (A to B)	2.3 to 2.7		1.0	4.0	ns
		3.0 to 3.6		0.8	3.6	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time (B to A)	2.3 to 2.7		1.0	4.9	ns
		3.0 to 3.6		0.8	4.0	
$t_{\text {PzL }} \mathrm{t}_{\text {PzH }}$	Output Enable Time (A to B)	2.3 to 2.7		1.0	5.8	ns
		3.0 to 3.6		0.8	4.3	
$\mathrm{t}_{\text {PzL }} \mathrm{t}_{\text {PzH }}$	Output Enable Time (B to A)	2.3 to 2.7		1.0	6.8	ns
		3.0 to 3.6		0.8	4.8	
$\mathrm{t}_{\text {PLZ }} \mathrm{t}_{\text {PHZ }}$	Output Disable Time (A to B)	2.3 to 2.7		1.0	4.8	ns
		3.0 to 3.6		0.8	5.6	
$\mathrm{t}_{\text {PLZ }} \mathrm{tPHZ}$	Output Disable Time (B to A)	2.3 to 2.7		1.0	5.7	ns
		3.0 to 3.6		0.8	7.0	
$\mathrm{t}_{\text {OSLH }} \mathrm{t}_{\text {OSHL }}$	Output To Output Skew Time (note1, 2)	2.3 to 2.7			0.5	ns
		3.0 to 3.6			0.5	

[^0]Table 10: Capacitive Characteristics

Symbol	Parameter	Test Condition		$\begin{gathered} \text { Value } \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$					
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	2.5 or 3.3	$\mathrm{V}_{\mathrm{IN}^{\prime}}=0$ or $\mathrm{V}_{\text {CC }}$		4		pF
Cout	Output Capacitance	2.5 or 3.3	$\mathrm{V}_{\text {IN }}=0$ or V_{CC}		8		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	2.5 or 3.3	$\begin{gathered} \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		28		pF

1) $\mathrm{C}_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $\mathrm{I}_{\mathrm{CC}(\mathrm{opr})}=\mathrm{C}_{P D} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 16(\mathrm{per}$ circuit)

Figure 3: Test Circuit

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	6 V
$\mathrm{t}_{\text {PLL }} \mathrm{t}_{\text {PLZ }}\left(\mathrm{V}_{\mathrm{CC}}=2.3\right.$ to 2.7 V$)$	$2 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

$C_{L}=30 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R 1=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

Table 11: Waveform Symbol Values

Symbol	V_{Cc}	
	$\mathbf{3 . 0}$ to3.6V	2.3 to 2.7V
V_{IH}	2.7 V	$\mathrm{~V}_{\mathrm{CC}}$
V_{M}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Figure 4: Waveform - Propagation Delays ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Figure 5: Waveform - Output Enable And Disable Time ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

FPC-48 (MIL-STD-1835) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	2.18		2.72	0.086		0.107
b		0.254			0.010	
c		0.15			0.006	
D		15.75			0.620	
E		9.65			0.380	
E2		6.35			0.0250	
e		0.635			0.330	
L		8.38				0.045
Q	0.66		1.14	0.026		0.005
S1		0.13				

Table 12: Revision History

Date	Revision	Description of Changes
06-Jul-2004	1	First Release
19-Jul-2004	2	Data on Range -40 to 85° C Removed on Tables 6, 7, 8, 9.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

[^0]: 1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switch-
 ing in the same direction, either HIGH or LOW ($\left.\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\text {PLHm }}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLn }}\right|\right)$
 2) Parameter guaranteed by design
